首页> 外文OA文献 >Sufficient conditions for convergence of multiple Fourier series with $J_k$-lacunary sequence of rectangular partial sums in terms of Weyl multipliers
【2h】

Sufficient conditions for convergence of multiple Fourier series with $J_k$-lacunary sequence of rectangular partial sums in terms of Weyl multipliers

机译:多个傅里叶级数收敛的充分条件   根据Weyl,$ J_k $ -launary矩形部分和的序列   乘法器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We obtain sufficient conditions for convergence (almost everywhere) ofmultiple trigonometric Fourier series of functions $f$ in $L_2$ in terms ofWeyl multipliers. We consider the case where rectangular partial sums ofFourier series $S_n(x;f)$ have indices $n=(n_1,\dots,n_N) \in \mathbb Z^N$,$N\ge 3$, in which $k$ $(1\leq k\leq N-2)$ components on the places$\{j_1,\dots,j_k\}=J_k \subset \{1,\dots,N\} = M$ are elements of (single)lacunary sequences (i.e., we consider the, so called, multiple Fourier serieswith $J_k$-lacunary sequence of partial sums). We prove that for any sample$J_k\subset M$ the Weyl multiplier for convergence of these series has the form$W(\nu)=\prod \limits_{j=1}^{N-k} \log(|\nu_{{\alpha}_j}|+2)$, where$\alpha_j\in M\setminus J_k $, $\nu=(\nu_1,\dots,\nu_N)\in{\mathbb Z}^N$. So,the "one-dimensional" Weyl multiplier -- $\log(|\cdot|+2)$ -- presents in$W(\nu)$ only on the places of "free" (nonlacunary) components of the vector$\nu$. Earlier, in the case where $N-1$ components of the index $n$ areelements of lacunary sequences, convergence almost everywhere for multipleFourier series was obtained in 1977 by M.Kojima in the classes $L_p$, $p>1$,and by D.K.Sanadze, Sh.V.Kheladze in Orlizc class. Note, that presence of twoor more "free" components in the index $n$ (as follows from the results byCh.Fefferman (1971)) does not guarantee the convergence almost everywhere of$S_n(x;f)$ for $N\geq 3$ even in the class of continuous functions.
机译:对于Weyl乘子,我们获得了在$ L_2 $中的多个三角傅里叶函数$ f $收敛的几乎所有条件的充分条件。我们考虑傅立叶级数$ S_n(x; f)$的矩形部分和具有索引$ n =(n_1,\ dots,n_N)\ in \ mathbb Z ^ N $,$ N \ ge 3 $的情况,其中位置上的k $ $(1 \ leq k \ leq N-2)$分量$ \ {j_1,\ dots,j_k \} = J_k \ subset \ {1,\ dots,N \} = M $是元素(单个)项序列(即,我们考虑具有$ J_k $-部分和的项序列的傅立叶级数)。我们证明,对于任何样本$ J_k \ subset M $,用于收敛这些序列的Weyl乘数的形式为$ W(\ nu)= \ prod \ limits_ {j = 1} ^ {Nk} \ log(| \ nu_ { {\ alpha} _j} | +2)$,其中$ \ alpha_j \ in M \ setminus J_k $,$ \ nu =(\ nu_1,\ dots,\ nu_N)\ in {\ mathbb Z} ^ N $。因此,“一维” Weyl乘数-$ \ log(| \ cdot | +2)$-仅在向量的“自由”(非词性)分量的位置上出现$ W(\ nu)$ $ \ nu $。早些时候,在索引$ n $元素序列中的$ N-1 $个要素的情况下,M.Kojima于1977年获得了M.Kojima在$ L_p $,$ p> 1 $,由DKSanadze,Sh.V。Kheladze担任Orlizc类。请注意,索引$ n $中存在两个或多个“自由”成分(如Ch.Fefferman(1971)的结果所示)并不能保证$ N \的几乎$ S_n(x; f)$的收敛性。 geq 3 $甚至在连续函数类中也是如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号